494 research outputs found

    Force distributions in a triangular lattice of rigid bars

    Full text link
    We study the uniformly weighted ensemble of force balanced configurations on a triangular network of nontensile contact forces. For periodic boundary conditions corresponding to isotropic compressive stress, we find that the probability distribution for single-contact forces decays faster than exponentially. This super-exponential decay persists in lattices diluted to the rigidity percolation threshold. On the other hand, for anisotropic imposed stresses, a broader tail emerges in the force distribution, becoming a pure exponential in the limit of infinite lattice size and infinitely strong anisotropy.Comment: 11 pages, 17 figures Minor text revisions; added references and acknowledgmen

    Memory of the Unjamming Transition during Cyclic Tiltings of a Granular Pile

    Get PDF
    Discrete numerical simulations are performed to study the evolution of the micro-structure and the response of a granular packing during successive loading-unloading cycles, consisting of quasi-static rotations in the gravity field between opposite inclination angles. We show that internal variables, e.g., stress and fabric of the pile, exhibit hysteresis during these cycles due to the exploration of different metastable configurations. Interestingly, the hysteretic behaviour of the pile strongly depends on the maximal inclination of the cycles, giving evidence of the irreversible modifications of the pile state occurring close to the unjamming transition. More specifically, we show that for cycles with maximal inclination larger than the repose angle, the weak contact network carries the memory of the unjamming transition. These results demonstrate the relevance of a two-phases description -strong and weak contact networks- for a granular system, as soon as it has approached the unjamming transition.Comment: 13 pages, 15 figures, soumis \`{a} Phys. Rev.

    X-Ray Spectroscopic Laboratory Experiments In Support of the NASA X-Ray Astronomy Flight Program

    Get PDF
    During the 1997 performance period, our work focused on the L-shell X-ray emission from highly charged iron ions in the 10-18 A region. Details of our accomplishments in 1997 are presented in the following. We start by describing the laboratory measurements made and their impact on the X-ray flight program and conclude by an overview of new instrumental capabilities developed for uses in the coming year

    National Athletic Trainers\u27 Association Position Statement: Safe Weight Loss and Maintenance Practices in Sport and Exercise

    Get PDF
    Objective: To present athletic trainers with recommendations for safe weight loss and weight maintenance practices for athletes and active clients and to provide athletes, clients, coaches, and parents with safe guidelines that will allow athletes and clients to achieve and maintain weight and body composition goals. Background: Unsafe weight management practices can compromise athletic performance and negatively affect health. Athletes and clients often attempt to lose weight by not eating, limiting caloric or specific nutrients from the diet, engaging in pathogenic weight control behaviors, and restricting fluids. These people often respond to pressures of the sport or activity, coaches, peers, or parents by adopting negative body images and unsafe practices to maintain an ideal body composition for the activity. We provide athletic trainers with recommendations for safe weight loss and weight maintenance in sport and exercise. Although safe weight gain is also a concern for athletic trainers and their athletes and clients, that topic is outside the scope of this position statement. Recommendations: Athletic trainers are often the source of nutrition information for athletes and clients; therefore, they practices, and methods to change body composition. Body composition assessments should be done in the most scientifically appropriate manner possible. Reasonable and individualized weight and body composition goals should be identified by appropriately trained health care personnel (eg, athletic trainers, registered dietitians, physicians). In keeping with the American Dietetics Association (ADA) preferred nomenclature, this document uses the terms registered dietitian or dietician when referring to a food and nutrition expert who has met the academic and professional requirements specified by the ADA\u27s Commission on Accreditation for Dietetics Education. In some cases, a registered nutritionist may have equivalent credentials and be the commonly used term. All weight management and exercise protocols used to achieve these goals should be safe and based on the most current evidence. Athletes, clients, parents, and coaches should be educated on how to determine safe weight and body composition so that athletes and clients more safely achieve competitive weights that will meet sport and activity requirements while also allowing them to meet their energy and nutritional needs for optimal health and performance

    Self-diffusion in dense granular shear flows

    Full text link
    Diffusivity is a key quantity in describing velocity fluctuations in granular materials. These fluctuations are the basis of many thermodynamic and hydrodynamic models which aim to provide a statistical description of granular systems. We present experimental results on diffusivity in dense, granular shear in a 2D Couette geometry. We find that self-diffusivities are proportional to the local shear rate with diffusivities along the mean flow approximately twice as large as those in the perpendicular direction. The magnitude of the diffusivity is D \approx \dot\gamma a^2 where a is the particle radius. However, the gradient in shear rate, coupling to the mean flow, and drag at the moving boundary lead to particle displacements that can appear sub- or super-diffusive. In particular, diffusion appears superdiffusive along the mean flow direction due to Taylor dispersion effects and subdiffusive along the perpendicular direction due to the gradient in shear rate. The anisotropic force network leads to an additional anisotropy in the diffusivity that is a property of dense systems with no obvious analog in rapid flows. Specifically, the diffusivity is supressed along the direction of the strong force network. A simple random walk simulation reproduces the key features of the data, such as the apparent superdiffusive and subdiffusive behavior arising from the mean flow, confirming the underlying diffusive motion. The additional anisotropy is not observed in the simulation since the strong force network is not included. Examples of correlated motion, such as transient vortices, and Levy flights are also observed. Although correlated motion creates velocity fields qualitatively different from Brownian motion and can introduce non-diffusive effects, on average the system appears simply diffusive.Comment: 13 pages, 20 figures (accepted to Phys. Rev. E

    QED self-energy contribution to highly-excited atomic states

    Get PDF
    We present numerical values for the self-energy shifts predicted by QED (Quantum Electrodynamics) for hydrogenlike ions (nuclear charge 60≀Z≀11060 \le Z \le 110) with an electron in an n=3n=3, 4 or 5 level with high angular momentum (5/2≀j≀9/25/2\le j \le 9/2). Applications include predictions of precision transition energies and studies of the outer-shell structure of atoms and ions.Comment: 20 pages, 5 figure

    The compositional and evolutionary logic of metabolism

    Full text link
    Metabolism displays striking and robust regularities in the forms of modularity and hierarchy, whose composition may be compactly described. This renders metabolic architecture comprehensible as a system, and suggests the order in which layers of that system emerged. Metabolism also serves as the foundation in other hierarchies, at least up to cellular integration including bioenergetics and molecular replication, and trophic ecology. The recapitulation of patterns first seen in metabolism, in these higher levels, suggests metabolism as a source of causation or constraint on many forms of organization in the biosphere. We identify as modules widely reused subsets of chemicals, reactions, or functions, each with a conserved internal structure. At the small molecule substrate level, module boundaries are generally associated with the most complex reaction mechanisms and the most conserved enzymes. Cofactors form a structurally and functionally distinctive control layer over the small-molecule substrate. Complex cofactors are often used at module boundaries of the substrate level, while simpler ones participate in widely used reactions. Cofactor functions thus act as "keys" that incorporate classes of organic reactions within biochemistry. The same modules that organize the compositional diversity of metabolism are argued to have governed long-term evolution. Early evolution of core metabolism, especially carbon-fixation, appears to have required few innovations among a small number of conserved modules, to produce adaptations to simple biogeochemical changes of environment. We demonstrate these features of metabolism at several levels of hierarchy, beginning with the small-molecule substrate and network architecture, continuing with cofactors and key conserved reactions, and culminating in the aggregation of multiple diverse physical and biochemical processes in cells.Comment: 56 pages, 28 figure
    • 

    corecore